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dielectric properties induced by AC and DC field coupling
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BP: 613 Porto-Novo, Republic of Benin

Received 27 March 1998, in final form 2 September 1998

Abstract. The long time effect of a radio frequency (rf) AC field superimposed on a DC field on
the electrical susceptibility and the Kerr optical functions of polarizable fluids in inert solvent is
analysed. The results obtained for the classical Brownian limit, valid for dense solvent media, well
reproduce classical results published in the literature with excellent precisions in inertia, density and
temperature dependences. The low-density limit yields absorption–dispersion lines whose widths
and shifts are density, inertia and temperature dependent. While the low density and/or large inertia
susceptibility is explicitly written as a continued fraction obtained by solving an infinite hierarchy of
differential coupled equations, that of the Kerr effect is given in the form of successive convergents
of the solutions of an infinite hierarchy of differential difference triplets. The polarization/AC field
phase difference is analysed. The effects of the constant field strength and the AC field frequency
on the Kerr function are explored. In this paper (paper IV) the derivation of some quoted equations
will intentionally be left out as they exist in paper III (Titantah J T and Hounkonnou M N 1997J.
Phys. A: Math. Gen.306347) of which this work is its logical continuation.

1. Introduction

Over the past years, the problem of dielectric relaxation and Kerr effect has been the subject
of intense work both theoretically and experimentally. Special emphasis has been given to
the classical analysis of the problem. Most of the results published thus far have not gone
beyond explaining the observations on classical systems, though it is well known that under
certain physical conditions quantum aspects start to influence the physical properties of some
media [1]. Since 1994, we have been developing a new quantum approach for the description of
dielectric and electro-optical properties of materials [2–4]. In our descriptions, we have shown
that widely published classical results [5–20] are well recovered as limiting cases of our more
general quantum theory. This paper pursues this study, extending it to the case of DC and AC
field couplings. In recent papers [2–4], we derived a master equation describing the evolution
of a system of linear rigid rotators in a bath of non-interacting harmonic oscillators. Due to the
fact that experimentally observed spectra are accounted for, strongly, by molecular rotational
motions, we consider the rotational degrees of freedom of the rotator by defining an orientation
operatorû = µ̂/µ, whereµ̂ is the rotator permanent dipole moment of magnitudeµ. The
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master equation for the statistical orientation probability density operatorρ̂S(t) associated with
the motion of the rotator in interaction with the bath and an external driving field is [2, 3]

∂ρ̂S(t)

∂t
+

i

h̄
[ĤS, ρ̂S(t)] + K̂ρ̂S(t) = − i

h̄
[ĤE, ρ̂S(t)] (1)

where ĤS is the rotator rotational kinetic energy operator, whose eigenvalues areEl =
(h̄2/2I )l(l + 1) with l = 0, 1, 2 . . . and i= √−1.

The collision term is written as

K̂ρ̂S(t) = ζ

I

∞∑
l=1

l{A∗l û · û−l ρ̂S(t)− Alû · ρ̂S(t)û+
l +Blû · û+

l ρ̂S(t)− B∗l û · ρ̂S(t)û−l
−A∗l û−l · ρ̂S(t)û +Alρ̂S(t)û

+
l · û +B∗l ρ̂S(t)û

−
l · û− Blû+

l ρ̂S(t) · û} (2)

where

Al = ω2
D

ω2
D + ω2

l

[
1 +N(ωl) + i

(
κ(xl, xD)− ωl

2ωD

)]
(3)

Bl = ω2
D

ω2
D + ω2

l

[
N(ωl) + i

(
κ(xl, xD) +

ωl

2ωD

)]
(4)

with

κ(xl, xD) = −
[

1

xD
+ 2

∞∑
n=1

x2
l − 2πxDn

(xl + xD)(x2
l + 4π2n2)

]
(5)

and

xD = βh̄ωD xl = βh̄ωl β = 1/(kBT ) n = 1, 2, 3, . . . . (6)

ωD is the characteristic Debye frequency,kB the Boltzmann constant,T the absolute
temperature andN(ωl) the occupation number of the rotator quantum levell (bosonic).A∗l
andB∗l are the complex conjugates ofAl andBl , respectively.ζ is the friction coefficient
characterizing the effects of the bath oscillator concentration on the rotator dynamics, andI is
the rotator moment of inertia.

We use the spherical harmonic expansion of the unit vector operatorû as [2, 3]

û(t) =
∞∑
l=1

(û+
l (t) + û−l (t)) (7)

where

û+
lx(t) = 1

2

l∑
m=−l
|l, m〉[〈l − 1, m + 1|A(l,m)− 〈l − 1, m− 1|B(l,m)] (8)

û+
ly(t) =

1

2i

l∑
m=−l
|l, m〉[〈l − 1, m + 1|A(l,m) + 〈l − 1, m− 1|B(l,m)] (9)

û+
lz(t) =

l∑
m=−l
|l, m〉〈l − 1, m|C(l,m) (10)

and

û−l (t) = (û+
l (t))

†. (11)

A(l,m) =
√
(l −m)(l −m− 1)

(2l − 1)(2l + 1)
(12)
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B(l,m) =
√
(l +m)(l +m− 1)

(2l − 1)(2l + 1)
(13)

C(l,m) =
√
(l −m)(l +m)

(2l − 1)(2l + 1)
. (14)

The AC–DC field coupling term is

ĤE(t) =


0 if t 6 0

−µ(Ec +Ea cosωt) cosβ̂ − α‖ − α⊥
2

(Ec +Ea cosωt)2 cos2 β̂−
−α⊥

2
(Ec +Ea cosωt)2Î if t > 0.

(15)

α‖ and α⊥ are, respectively, the rotator polarizability tensor components parallel and
perpendicular to the molecular principal axis. We have assumed that the electric fields are
applied along thez-axis of the laboratory frame.̂β is the angle between the applied field and
the dipolar axis. With this Hamiltonian, the initial condition corresponds to equilibrium under

free rotations,ρ̂(t = 0) = ρ̂eqS = exp(− ĤS
kBT
)/Z whereZ is the one-particle rotator partition

function.
In [4], we used the master equation we derived in [2] (which we named ‘the HN master

equation’ in our previous papers) to verify the dielectric properties of a system of polar rotators
in interaction with a constant electric field of strengthEc. The effects of inertia and bath
concentration were intensively explored. Using the rotational Smoluchowski equation [5],
Morita et al [6] and Matsumotoet al [7] presented studies of this problem but the former laid
much interest on the effect of the applied field on the Kerr effect relaxation that results from
the sudden application of the DC field. By averaging the Langevin equation, Coffey [8, 9]
tackled the problem emphasizing the effects of inertia.

In this paper, we consider the effect of coupling a constant DC field with a radio frequency
AC field. In this paper, we adopt the notations of paper III [4] so that we can directly exploit
existing results therein. The polarization and the Kerr functions can be calculated using the
Hounkonnou–Titantah (HT) quantum relations [4]

P(t) = 2µ

3

∞∑
l=0

(l + 1)
e−βEl

Z
Reσl,l+1(t) (16)

8(t) = 2

15

∞∑
l=0

e−βEl

Z

(l + 1)

(2l + 3)

{
l(2l + 1)

(2l − 1)
ϕl,l(t) + 3(l + 2)Reηl,l+2(t)

}
(17)

whereZ is the one-particle free rotator canonical partition function and Re denotes the real
part. The reduced HT equations for the matrix elementsσl,l+1(t), ϕl,l(t), andηl,l+2(t) [4] are:

(i) the reduced HT1;(
∂

∂t
− ih̄

I
(l + 1)

)
σl,l+1(t)

+B

[{
(A∗l l

2 +Bl+1(l + 1)2)
1

2l + 1
+ (Al+1(l + 1)2 +B∗l+2(l + 2)2)

1

2l + 3

}
×σl,l+1(t)− eβ(El−El−1)

l

2l + 1
[Bll + (l + 1)B∗l+1]σl−1,l(t)(1− δl0)

−e−β(El+1−El) l + 2

2l + 3
[A∗l+1(l + 1) +Al+2(l + 2)]σl+1,l+2(t)
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− l + 1

(2l + 1)(2l + 3)
[A∗l+1(l + 1) +B∗l+1(+1)]σ ∗l,l+1(t)

]
= − i

µE(t)

h̄
(1− e−β(El+1−El)) (18)

(ii) the reduced HT2;

∂

∂t
ϕl,l(t) + 2BRe

{
(All

2 +Bl+1(l + 1)2)

2l + 1
ϕl,l(t)− Al+1(l + 1)

× (l + 2)(2l − 1)

(2l + 1)2
e−β(El+1−El)ϕl+1,l+1(t)

−Bll (l − 1)(2l + 3)

(2l + 1)2
eβ(El−El−1)ϕl−1,l−1(t)(1− δl0)

−3
(Bll +Al+1(l + 1))

(2l + 1)2
eβ(El−El−1)ηl−1,l+1(t)(1− δl0)

}
= µE(t)

h̄

(
2l − 1

2l + 1
Im σl,l+1(t)− eβ(El−El−1)

2l + 3

2l + 1
Im σl−1,l(t)(1− δl,0)

)
(19)

and
(iii) the reduced HT3;[

∂

∂t
− ih̄

I
(2l + 3)

]
ηl,l+2(t) +B

[{
[A∗l l

2 +Bl+1(l + 1)2]

× 1

2l + 1
+ [Al+2(l + 2)2 +B∗l+3(l + 3)2]

1

2l + 5

}
ηl,l+2(t)

− l

2l + 1
eβ(El−El−1)[B∗l l +Bl+2(l + 2)]ηl−1,l+1(t)(1− δl0)

−e−β(El+1−El) l + 3

2l + 5
[A∗l+1(l + 1) +Al+3(l + 3)]ηl+1,l+3(t)

− 2

(2l + 1)(2l + 5)
[A∗l+1(l + 1) +Bl+2(+2)]ϕl+1,l+1(t)

]
= i

µE(t)

h̄
(e−β(El+1−El)σl+1,l+2(t)− σl,l+1(t))

−i
1αE(t)2

2h̄
(1− e−β(El+2−El)) (20)

whereB = ζ/I . The initial conditions on these matrix elements are

σl,l+1(t = 0) = ϕl,l(t = 0) = ηl,l+2(t = 0) = 0.

2. On the electrical susceptibility and the Kerr functions

In this section, the calculations of the electrical susceptibility and the Kerr functions are
performed in two different physical limits: (1) the classical Brownian limit and (2) the rotating
wave approximation (RWA). In each case, we analyse the long-time effect, that is, we consider
very long times compared with the period of collisionτ = 1/B, the Debye relaxation time
τD = ζ/(2IkBT ) and the mean thermal angular time(I/kBT )0.5.
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2.1. The classical Brownian limit

This limit is characterised by slow moving rotators entering into instantaneous collisions with
the bath of fast moving oscillators. Inertial effects are very important for understanding
line shapes. With the aid of the Fokker–Planck–Kramer (FPK) equation [29, 30, 10–12],
Hounkonnouet al [11, 13–15] presented the steady state analysis of the electric polarization
and the Kerr optical function in a radio frequency AC field; while their electric susceptibility
function was given as a continued fraction, the Kerr function was in the form of exponential
integrals. Filippini [16] experimentally measured the Kerr dispersion constant when an AC
field superimposed on a unidirectional field is applied to a liquid. Coffey and Paranjape [18],
Morita [5], Morita and Watanabe [19], gave theoretical descriptions of these phenomena using
pure classical diffusion equations.

2.1.1. The electrical susceptibility.In the classical limit, quantum equations reduce to the
classical HT equations for the electrical susceptibility [4]

P(τ) = µ

3
S0

0(τ ) (21)(
d

dτ
+ 2j

)
S0
j (τ ) + 2b2[(j + 1)S1

j (τ )− jS1
j−1(τ )] = 0 (22)

and(
d

dτ
+ 2j + 1

)
S1
j (τ )− b1[S0

j (τ )− S0
j+1(τ )] = −b1

µEa

kBT
(r + cosωt)δj,0 (23)

whereτ = Bt , ω′ = ω/B are dimensionless time and frequency, respectively;r = Ec/Ea
measures the ratio of the constant field strength to the amplitude of the AC field.b1b2 = γ =
IkBT /ζ

2, whereζ is the coupling coefficient. In the steady state regime, we search forSmj (τ )

in the forms:

S0
0(ω
′, τ ) = µEa

kBT
[r + S0

0
′
(ω′)eiω′τ + (S0

0
′
(ω′))∗e−iω′τ ]

S0
j (ω
′, τ ) = µEa

kBT
S0
j

′
(ω′)eiω′τ + C.C. for j 6= 0

S1
j (ω
′, τ ) = µEa

kBT
S1
j

′
(ω′)eiω′τ + C.C. for all j

(24)

where C.C. denotes complex conjugate. On substituting these into the hierarchy (22), (23) and
solving forS0

0
′
(ω′), we get

S0
0
′
(ω′) = γ

2γ + iω′
[
1 + iω′ +

2γ

2 + iω′ +
4γ

3 + iω′ +
4γ

4 + iω′ +
6γ

5 + iω′ + · · ·

] (25)

and using (21), we deduce the polarization

P(ω′, τ ) = µ2Ea

3kBT

{
r

2
+

γeiω′τ

2γ + iω′
[
1 + iω′ +

2γ

2 + iω′ +
4γ

3 + iω′ +
4γ

4 + iω′ + · · ·

] + C.C.

}
. (26)
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γ=0.05

γ=0.5

Figure 1. Function cosντ (——), the reduced susceptibilityχr (ν, τ ) for the parameterγ =
IkBT /ζ

2 = 0.05 (- - - -) andγ = 0.5 (· · · · · ·) against the dimensionless timeτ = ωmeant ,
provided the fixed reduced frequencyν = ω/ωmean = 0.15 and DC field parameterr = 0
(ωmean = (kBT /I)0.5 andr = E2

c /(E
2
c +E2

a )).

In the absence of the DC field(r = 0), the result of Gross [20] on generalized Brownian
motion is recovered. We define a reduced susceptibilityχr(ω

′, τ ) as

χr(ω
′, τ ) = r + 2|S0

0
′
(ω′)| cos(ω′τ − α(ω′)) (27)

whereα(ω, ), the phase difference between the exciting AC field and the dielectric response
function (the polarization), furnishes valuable information on the absorption properties of the
medium under investigation. It is given by

tanα(ω′) = − Im S0
0
′
(ω′)

ReS0
0
′
(ω′)

. (28)

On neglecting inertial effects in (25), we obtain the Debye limit

S0
0
′
(ω′) = 1

2(1 + iωτD)
(29)

in usual frequency units. In this case, the phase is given by tanα(ω) = ωτD with
τD = ζ/(2kBT ). The lowest inertial limit, corresponding to the Rocard formula,

S0
0
′
(ω′) = 1

2(1 + iωτD − (Iω2/2kBT ))
(30)

leads to the phase expression tanα(ω) = ωτD/(1− (Iω2/2kBT )) which yields a maximum
phase ofπ/2 for frequency of

√
2 times mean thermal agitation frequency (ωmean =
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Figure 2. Function cosντ (——), the reduced susceptibilityχr (ν, τ ) for the parameterγ = 0.05
(- - - -) andγ = 0.5 (· · · · · ·) against the dimensionless timeτ = ωmeant , provided the fixed
reduced frequencyν = 4.00 andr = 0.

(kBT /I)
0.5). At this frequency value, the rate of energy absorption from the surrounding

bath by the rotators is in phase with the forcing field (since the rate of heat exchange between
the rotator and the surrounding is proportional to minus the rate of change of the induced
polarization [3, 4, 17]). On defining a new dimensionless frequencyν = ω/ωmean in (25), we
rewriteS0

0
′
as

S0
0
′
(ν) = 1

2 + iν/
√
γ − ν2 + 2i

√
γ ν

2 + i
√
γ ν +

4γ

3 + i
√
γ ν +

4γ

4 + i
√
γ ν + · · ·

. (31)

Figures 1 and 2 show the plots of the external exciting field cosντ and those of the
reduced susceptibilityχr(ν, τ ) as functions of the dimensionless timeτ (with τ = tωmean)
for ν = 0.15, 4.00 and for different values ofγ . For fixedωmean, we analyse the effect of
friction ζ on the phase, throughγ = IkBT /ζ

2. Figure 3 shows a 3D plot ofχr(ν, τ ) for
γ = 0.05. Figure 4 shows a 3D plot of the tangent of the phase angle as a function of the
reduced frequencyν andγ . The peaks are found to shift towards larger frequency values asγ

increases. It is important to note that while the Debye theory predicts such phenomena only
for infinite frequencies (tanα(ω) = ωτD) and the Rocard lowest inertial limit predicts a phase
difference ofπ/2 between the applied field and the material response atν = √2, our results
extensively portray the effect of inertia on this phase difference. The pioneering investigations
of inertial effects in Debye relaxation date back to the work by Sack in 1957 [23] in which he
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Figure 3. 3D plot of the reduced polarizationχr (ω′, τ ) for the inertial parameterγ = 0.05 and
r = 0 against the dimensionless time and freqencyτ = Bt (B = ζ/I ) andω′ = ω/B, respectively.
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Figure 4. 3D plot of function tanα(ν, γ ) against the dimensionless freqencyν = ω/ωmean and
the inertia parameterγ = 0.05 (classical result).

expressed the dielectric property as a continued fraction.
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2.1.2. The Kerr function. The classical HT equations [4] for the optical Kerr function are:

8(τ) = 1
30Y

0
0 (τ ) (32)

with(
d

dτ
+ 2j

)
Y 0
j (τ ) + 24b2((j + 1)Y 1

j (τ )− jY 1
j−1(τ ))

= − 4b2
µEa

kBT
(r + cosω′τ)S1

j−1(τ )(1− δj,0) (33)(
d

dτ
+ 2j + 1

)
Y 1
j (τ )−

b1

3
(Y 0
j (τ )− Y 0

j+1(τ )) +
b1

3
(Xj (τ )−Xj+1(τ ))

= − b1
µEa

kBT
(r + cosω′τ)S0

j (τ )− b1
1αE2

a

kBT
(r + cosω′τ)2δj,0 (34)[

(2j + 1)

(
d

dτ
+ 2j

)
+ 2

]
Xj(τ)− j

(
d

dτ
+ 2j − 2

)
Xj−1(τ )

−(j + 1)

(
d

dτ
+ 2j + 2

)
Xj+1(τ )− 1

2Y
0
j (τ )

= b2
µEa

kBT
(r + cosω′τ)[−2j (j − 1)S1

j−2(τ ) + j (4j + 5)S1
j−1(τ )

−(j + 1)(2j + 3)S1
j (τ )]. (35)

Steady state solutions are sought in the forms:

Xj(ω
′, τ ) =

(
µEa

kBT

)2

[Xj,0(ω
′) +Xj,1(ω

′)eiω′τ +Xj,2(ω
′)e2iω′τ + C.C.]

Y 0
j (ω

′, τ ) =
(
µEa

kBT

)2

[Y 0
j,0(ω

′) + Y 0
j,1(ω

′)eiω′τ + Y 0
j,2(ω

′)e2iω′τ + C.C.]

Y 1
j (ω

′, τ ) =
(
µEa

kBT

)2

[Y 1
j,0(ω

′) + Y 1
j,1(ω

′)eiω′τ + Y 1
j,2(ω

′)e2iω′τ + C.C.].

(36)

Knowing the forms ofSmj , we obtain the three systems of hierarchies (each system being a set
of three coupled equations (triplets)) given in appendix A. The technique adopted in solving
these triplets is based on convergents. Note that the systems could be written in matrix forms
of infinite dimensions. The notion of convergence can be seen as limiting the dimensions of
the matrices. The zeroth convergent consists of considering only equations involvingj = 0.
The first convergent is the modification of the zeroth by includingj = 1 terms. The former
is the solution of a 3× 3 matrix equation, while the latter is that of a 6× 6 matrix equation.
Reliable spectral information can only be obtained from at least a 6× 6 matrix equation. The
expressions forY 0

0,0(ω
′), Y 0

0,1(ω
′) andY 0

0,2(ω
′) obtained forj = 1, are given in appendix B,

whereR = µ2/(1αkBT ), E2 = E2
a + E2

c andK0 = ( µ

KBT
)2 + 1α

KBT
. We can now write the

Kerr function as

8(ω′, τ ) = 1
30E

2K0[Y 0
0,0(ω

′) + Y 0
0,1(ω

′) exp(iω′τ) + Y 0
0,2(ω

′) exp(2iω′τ) + C.C.]. (37)

Note that in the expressions forY 0
0,0(ω

′), Y 0
0,1(ω

′) andY 0
0,2(ω

′), we have replaced the field
parameterr = Ec/Ea with a more convenient oner = E2

c /E
2 and the quantityR is replaced

by α = 1α/(kBT )

K0
. With these new parameters, the limiting cases are better understood; for

exampler = 0 corresponds to pure AC field effects andα = 0 demonstrates the properties of
a non-polarizable but polar molecule. Note that both parameters are such that 06 r 6 1 and
06 α 6 1. The Kerr function (37) presents very interesting properties. It expresses the time,
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radio frequency (rf), rotator-bath parameters and more importantly theEc/Ea dependences of
the Kerr electrical birefringence (KEB). For infinitely high frequencies, the function reduces
to the constant field steady state expression

8∞ = E2
c

15

((
µ2

kBT

)2

+
1α

kBT

)
+
E2
a

30

1α

kBT
. (38)

The effect of the AC field is felt only when1α = α‖ − α⊥ 6= 0. This result is consistent
with that of Doi and Edwards [21]. At very high frequencies, the AC field effects on dipole
moments average out. Also, in the absence of the DC field (r = 0), the termY 0

0,1(ω
′) vanishes

and the result for a pure AC field is recovered.
It is important to note that, while all these results are deduced as the classical limit of a

quantum theory, they recover recent results such as those of Déjardinet al in 1996 [24] and
Hounkonnouet al [11] based on the Fokker–Planck equation. More recently, Déjardinet al
[25] used the Smoluchowski equation to analyse the effect of a DC field on the relaxation time
of the dynamic Kerr function. A similar procedure was adopted by Coffeyet al [26] to tackle
the same problem.

2.2. The rotating wave approximation (RWA) limit

In this limit, the solution of the rotators in the bath is assumed highly diluted, the pressure and
friction are very low. The coupling parameterB or the characteristic rotator-bath frequency
is very small compared with the rotator linesωl = (h̄l/I ). The dynamics of the rotator is
governed mainly by free rotations and interactions with the re-orienting fields. Bath coupling
affects only the frequency shifts and line widths. The absorption lines are the neat spectral
lines corresponding to the differentl transitions owing to non-negligible Planck constant ¯h and
finite inertia [20]. The transition frequencies are

ωl−>l±1l = |(El±1l − El)|/h̄ = (2l + 1 +1l)h̄/2I

for transitions froml to l±1l. At the level of linear response,1l = 1 andωl+1 = (l + 1)h̄/I .
For the lowest-order nonlinear effect (the Kerr effect to the second order in the electric field),
1l = 2 andω2l+3 = (2l + 3)h̄/I .

The relevant dielectric matrix elements are governed by the quantum HT equations for
the electrical susceptibility and the Kerr optical functions [4]:(
∂

∂t
− i(ωl+1 +1ωl+1) + 0l+1

)
σl,l+1(t) = −i

µEa

h̄
(r + cosωt)(1− e−β(El+1−El)) (39)(

∂

∂t
+ γl

)
ϕl,l(t) = µEa

h̄
(r + cosωt)

×
(

2l − 1

2l + 1
Im σl,l+1(t)− eβ(El−El−1)

2l + 3

2l + 1
Im σl−1,l(t)(1− δl,0)

)
(40)(

∂

∂t
− i(ω2l+3 +1ω2l+3

)
+ 02l+3)ηl,l+2(t)

= i
µEa

h̄
(r + cosωt)(e−β(El+1−El)σl+1,l+2(t)− σl,l+1(t))

−i
1αE2

a

2h̄
(r + cosωt)2(1− e−β(El+2−El)). (41)

Here, we define the dimensionless line widths and frequency shifts:

γ ′l =
I

h̄
γl = 2BI

h̄

1

2l + 1

[
l2(1 +

1

eβh̄ωl − 1
) +

(l + 1)2

eβh̄ωl+1 − 1

]
(42)
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0′l+1 = 1
2(γ
′
l + γ ′l+1) (43)

0′2l+3 = 1
2(γ
′
l + γ ′l+2) (44)

1ω′l+1 = −
4h̄3B

Ik2
BT

2
(2l + 3)

×
∞∑
n=0

(2nπ)3

[(2nπ)2 + (al)2]

1

[(2nπ)2 + (a(l + 1))2][(2nπ)2 + (a(l + 2))2]
(45)

and

1ω′2l+3 = −
4h̄3B

Ik2
BT

2
(2l + 3)

∞∑
n=0

(2nπ)5(1 + a
(nπ)2

(l2 + 3l + 3))

[(2nπ)2 + (al)2][(2nπ)2 + (a(l + 1))2]

× 1

[(2nπ)2 + (a(l + 2))2][(2nπ)2 + (a(l + 3))2]
(46)

wherea = h̄2/IkBT . These functions indicate well how line widths and frequency shifts
respond to changing physical parameters like inertia, friction and temperature, and thus their
utility in exploring the influence of the parameter variations on spectral lines. Note that, in our
dimensionless frequency units, we define the quantum state frequencyω′l = l.

2.2.1. The electrical susceptibility.We are interested in the steady state regime. On solving
equation (39) for this, we get

σ stl,l+1(ω, t) = (µEa/h̄)
(

1− exp[− h̄2

IkBT
(l + 1)]

){
r

ωl+1 +1ωl+1 + i0l+1

+
eiωt

2(ωl+1 +1ωl+1− ω + i0l+1)
+

e−iωt

2(ωl+1 +1ωl+1 + ω + i0l+1)

}
. (47)

The polarization is deduced as

P(ω, t) = µ2Ea

3kBT

∞∑
l=0

(e−βEl − e−βEl+1)
l + 1

a
(l + 1 +1ω′l+1){r/[(l + 1 +1ω′l+1)

2 + 0′2l+1]

+([(l + 1 +1ω′l+1)
2 − ω′2 + 0′l+1

2] cosωt + 20′l+1ω
′ sinωt)/

([(l + 1 +1ω′l+1)
2 − ω′2 + 0′l+1

2]2 + 4ω′20′l+1
2)}. (48)

These are the Van Vleck–Weisskopf line forms for the electrical susceptibility. Sharp separate
lines result for small widths at half-heights0l+1. For line coupling and subsequent line overlaps
to be absent, thus,0l+1 should be small compared with line spacings which for the electrical
susceptibility stand at ¯h/I . Note that the Boltzmann weight e−βEl appearing in the last
expression renders small quantum number transitions more probable. An appropriate Taylor
expansion of the Bose–Einstein factor appearing in the expression of the half-width shows that
a necessary condition for dominant lines is expressed by the inequality(B/ωmean)

2� a3/4=
(h̄2/IkBT )

3/4.
For r = 0, we define the reduced susceptibility

χr(ω, t) = cos(ωt − α(ω)) (49)

whereα(ω), the phase difference between the exciting field and the induced polarization, is
given by

tanα(ω) =
[ ∞∑
l=0

(e−βEl − e−βEl+1)(l + 1)(l + 1 +1ω′l+1)0
′
l+1ω

′
/
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Figure 5. Plots of the phase differenceα(ω′) (in rad) between the AC field and response function
against the dimensionless frequencyω′ = ω/(ωq) for the ratio a = (ωq/ωmean)

2 = 0.05
(ωq = h̄/I ) for the friction parameters = 1/

√
γ = 0.025 (· · · · · ·), s = 0.01 (- - - -) and

s = 0.001 (——) (RWA).

([(l + 1 +1ω′l+1)
2 − ω′2 + 0′2l+1]

2 + 4ω′20′2l+1)

]/
[ ∞∑
l=0

(e−βEl − e−βEl+1)(l + 1)(l + 1 +1ω′l+1)((l + 1 +1ω′l+1)
2 − ω′2 + 0′2l+1)

/
([(l + 1 +1ω′l+1)

2 − ω′2 + 0′2l+1]
2 + 4ω′20′2l+1)

]
. (50)

Note that for usual temperatures and simple linear molecules like HCl and DCl [22, 31], the
frequency shift has a negligible contribution as it varies as1ω′l+1 ∼ −10−4(2l + 3) compared
with the corresponding linel + 1.

2.2.2. The Kerr function. On using the expression forσ stl,l+1(ω, t) (equation (47)) into
equations (40) and (41) and solving the resulting equations for the steady state matrix elements
ϕstl,l(ω, t) andηstl,l+2(ω, t), we deduce that the Kerr function comprises three terms: a frequency
dependent time constant term80(ω), anω-frequency time dependent term81(ω)eiωt and a
2ω-frequency time dependent one82(ω)e2iωt with their respective complex conjugates. In
other words,

8(ω, t) = 80(ω) +81(ω)e
iωt +82(ω)e

2iωt + C.C. (51)

where80(ω),81(ω) and82(ω) are explicitly written out in appendix C.
Relation (51) shows how a frequency-time dependent Kerr optical function depends on

field parameters like frequency and field strengths, on molecular parameters like moment of
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Figure 6. Plots of the phase differenceα(ω′) (in rad) between the AC field and response function
against the dimensionless frequencyω′ = ω/ωq for the ratioa = (ωq/ωmean)2 = 0.5 (ωq = h̄/I )
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√
γ = 0.25 (· · · · · ·), s = 0.08 (- - - -) ands = 0.01 (——)

(RWA).

inertia, dipole moment and polarizability, on bath frictional parameter and on temperature.
Despite the fact that these results have been obtained in the limit of small coupling parameter
B, they can still be used as a first approximation to interpret experimental results on dense bath
but at very low temperatures. We point out that, unlike earlier works on electrical susceptibility
which have always considered that observed spectra are mainly accounted for by transitions
involving 1l = ±1, these results on the Kerr optical effect predict, not only1l = ±1
transitions, but also those with1l = ±2.

3. Discussions

(1) In constant temperature conditions, the response of a dielectric material to a low frequency
external AC field is strong and is in phase with the latter for low frictional oscillator-bath
and/or large inertia molecules (γ = 0.5 in figure 1). From the energetic point of view, this
in-phase aspect favours the external field effect on the rotator-bath system and thus increases
the system’s ability to capture energy from the surroundings. On the other hand, a totally
different phenomenon is observed for high frequencies where a weak response sets in, tending
to annihilate the field effect by appearing in anti-phase with it (figure 2). The first convergent of
the classical susceptibility function corresponding to the Rocard result (the first approximation
of the inertia effect) gives a maximum phase for a frequency ofω = √2ωmean whatever theγ
value. At this frequency value collisions result in large energy exchanges of the order ofkBT .
For higherγ values, there is a departure from this frequency value (see figure 4).
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(2) The manifestation of quantum effects depends not only on the coupling parameter
(B = ζ/I ) but also on the temperature–inertia parametera = h̄2/(IkBT ). This allows us to
define a necessary condition for the domination of quantum effects. The inequality

s = B/ωmean = 1/
√
γ � 1

2(h̄
2/IkBT )

3/2 = a3/2/2 (52)

expresses this condition. For example, fora = 0.05, as the parameters decreases from 0.025
through 0.010 to 0.001, we observe a passage from a continuous classical spectrum through
broadened lines to well-defined discrete lines (figure 5); meanwhile fora = 0.5 quantum
effects are already present even fors = 0.08 (see figure 6). This observation is also important
for the Kerr spectra (see figure 14). In our previous paper [4], we had already remarked that,
as the coupling parameters = B/ωmean decreases under fixeda, a transition from the usual
continuous classical spectrum through broadened lines to separate lineforms was observed.
This phenomenon was also observed experimentally by Frenkel [1] on HCl in argon while
varying argon density at very low temperatures. A recent experimental study of the linear
and nonlinear dielectric spectra of 4, 4′-n-pentyl-cyanobiphenyl (5CB) was undertaken by De
Smetet al [27]. However, the study concerned large molecules at room temperatures. This
limited the interpretation of the results in the framework of classical theories well predicted
by Coffeyet al [18] and Alexiewiczet al [28].

(3) The time variation of the classical Kerr electrical birefringence (KEB) is characterized
by oscillations aboutr–ω dependent time constant values which decrease with decreasingr

and with increasing frequency. The 2ω-harmonic component is dominant for smallr and large
α values while the singleω one dominates for intermediate and higherr values, (see figures 7–
9). Physically, the doubling of period takes place by a process of progressive crushing of
intermediate peak values in the KEB curve shape with increasingr. This period change is



912 J T Titantah and M N Hounkonnou

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4

Φ
(ω

´,
τ)

τ

α=0.01
r=.995

r=.5
r=.005

Figure 10. Plots of the quantum Kerr function8(ω, t) against the dimensionless timet ′ = t/(h̄/I )
for the field ratior = 0.95 (——), r = 0.5 (- - - -) andr = 0.05 (· · · · · ·), provideω = 4h̄/I and
α = 0.1.

noticed by a set of pronounced transitions of non-sinusoidal periodic regimes which take place
between two sinusoidal regime limits corresponding to the extremer values (Ea � Ec and
Ea � Ec).

(4) For constant bath parameters and for small and intermediateEc/Ea ratio, the Kerr
effect increases with increasingα, presenting small amplitude distortions that disappear to
form secondary peaks asα grows, portraying the progressive appearance of the influence of
the 2ω-harmonic component (see figures 7–12).

(5) The Kerr spectral function for AC–DC coupling is

8̃(ω,�) = [2Re80(ω)δ(�) +81(ω)δ(�− ω) +8∗1(ω)δ(� + ω)

+82(ω)δ(�− 2ω) +8∗2(ω)δ(� + 2ω)]. (53)

This shows that for an AC field of given frequency, all three terms cannot be measured
simultaneously. The AC–DC field coupling on dielectrics, therefore, proves to be very useful
as, depending on the harmonic component observed, we are able to predict the relative strengths
of permanent dipole to induced dipole effects. The 2ω-component dominates for polarizable
fluids (largeα) while theω-one dominates for less polarizable fluids (smallα) (see figures 7–
12). More importantly, the observation of 2ω-harmonic component may also entail that the
most probable rotational lines involve transitions likel → l ± 2 while the observation ofω
harmonics concerns transitionsl → l ± 1 (see figures 13). This last point is very important
whenEc andEa are of the same order of magnitude.
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Institut de Physique Th́eorique of Universit́e Catholique de Louvain (UCL) for kind hospitality
during his last three month stay in Belgium.

Appendix A. Systems of hierarchies forY m
j,l andXj,l

(Triplet 1)

2jY 0
j,0(ω

′) + 24b2((j + 1)Y 1
j,0(ω

′)− jY 1
j−1,0(ω

′)) = −2b2S
1
j−1(ω

′)(1− δj,0)
(2j + 1)Y 1

j,0(ω
′)− b1

3
(Y 0
j,0(ω

′)− Y 0
j+1,0(ω

′)) +
b1

3
(Xj,0(ω

′)−Xj+1,0(ω
′))

= − b1

4
[(2r2 + 2r2/R + 1/R)δj,0 + 2S0

j (ω
′)]

[2j (2j + 1) + 2]Xj,0(ω
′)− j (2j − 2)Xj−1,0(ω)− (j + 1)(2j + 2)Xj+1,0(ω

′)

− 1
2Y

0
j,0(ω

′) = b2

2
[−2j (j − 1)S1

j−2(ω
′) + j (4j + 5)S1

j−1(ω
′)

−(j + 1)(2j + 3)S1
j (ω
′)].

(54)
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Figure 12. Plots of the quantum Kerr function8(ω, t) against the dimensionless timet ′ = t/(h̄/I )
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(Triplet 2)

(iω′ + 2j)Y 0
j,1(ω

′) + 24b2((j + 1)Y 1
j,1(ω

′)− jY 1
j−1,1(ω

′)) = −4rb2S
1
j−1(ω

′)(1− δj,0)
(iω′ + 2j + 1)Y 1

j,1(ω
′)− b1

3
(Y 0
j,1(ω

′)− Y 0
j+1,1(ω

′)) +
b1

3
(Xj,1(ω

′)−Xj+1,1(ω
′))

= − r b1

4
[(2 + 4/R)δj,0 + 4S0

j ]

[(2j + 1)(iω′ + 2j) + 2]Xj,1(ω
′)− j (iω′ + 2j − 2)Xj−1,1(ω

′)
−(j + 1)(iω′ + 2j + 2)Xj+1,1(ω

′)− ( 1
2)Y

0
j,1(ω

′)
= b2r[−2j (j − 1)S1

j−2(ω
′)

+j (4j + 5)S1
j−1(ω

′)− (j + 1)(2j + 3)S1
j (ω
′)].

(55)

(Triplet 3)

(2iω′ + 2j)Y 0
j,2(ω

′) + 24b2((j + 1)Y 1
j,2(ω

′)− jY 1
j−1,2(ω

′)) = −2b2S
1
j−1(ω

′)(1− δj,0)
(2iω′ + 2j + 1)Y 1

j,2(ω
′)− b1

3
(Y 0
j,2(ω

′)− Y 0
j+1,2(ω

′)) +
b1

3
(Xj,2(ω

′)−Xj+1,2(ω
′))

= − b1

4

[
1

R
δj,0 + 2S0

j

]
[(2j + 1)(2iω′ + 2j) + 2]Xj,2(ω

′)− j (2iω′ + 2j − 2)Xj−1,2(ω
′)

−(j + 1)(2iω′ + 2j + 2)Xj+1,2(ω
′)− 1

2Y
0
j,2(ω

′)

= b2

2
[−2j (j − 1)S1

j−2(ω
′)

+j (4j + 5)S1
j−1(ω

′)− (j + 1)(2j + 3)S1
j (ω
′)]

(56)
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whereR = µ2/(1αkBT ). For simplicity, we have left out the primes on eachSmj . i denotes

the complex number
√−1.

Appendix B. Expressions forY 0
0,0, Y

0
0,1 andY 0

0,2

Y 0
0,0(ω

′) = 1
2(α + 2r − αr) + (1− α)(1− r)

{(
1− iω′

2

)
+

2iω′

3(2 + 5γ )

×
[
2− γ − 8γ

2 + iω′ +
4γ

3 + iω′ +
4γ

4 + iω′ + · · ·
+

4γ 2/3

4γ + (2 + iω′)(3 + iω′ +
4γ

4 + iω′ +
6γ

5 + iω′ +
6γ

6 + iω′ + · · ·

)

]}

× γ

2γ + iω′(1 + iω′ +
2γ

2 + iω′ +
4γ

3 + iω′ +
4γ

4 + iω′ + · · ·

)
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Figure 14. Plot of the imaginary part of theω-harmonic component of the quantum Kerr function
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γ = 0.01 and the polarizability-dipole moment parameterα = 0.4
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+
64

9

γ

2 + 5γ
Y 0

2,0(ω
′) (57)

Y 0
0,1(ω

′) =
√
r(1− r)

{
(1 + 2/R)

6γ (1 +α)

1 + iω′

(
2 + iω′ + 4γ

15 + 4iω′

(3 + iω′)(4 + iω′)

)
+(1− α)

[
24γ

(1 + iω′)(2 + iω′)

(
2 + iω′ + 4γ

15 + 4iω′

(3 + iω′)(4 + iω′)

)
+

8iω′γ
1 + iω′

− 32iω′γ 2

(1 + iω′)(3 + iω′)(4 + iω′)

(
6(1 + iω′)
(2 + iω′)

− 4γ

4γ + (2 + iω′)(3 + iω′ +
4γ

4 + iω′ +
6γ

5 + iω′ +
6γ

6 + iω′ + · · ·

)

)

− 192γ 2iω′

(1 + iω′)(3 + iω′)(2 + iω′ +
4γ

3 + iω′ +
4γ

4 + iω′ +
6γ

5 + iω′ + · · ·

)

]
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× γ

2γ + iω′(1 + iω′ +
2γ

2 + iω′ +
4γ

3 + iω′ +
4γ

4 + iω′ + · · ·

)

+
128γ 2/r

3 + iω′
Y 0

2,1(ω
′)
}/{(

iω′ + 4γ
3 + iω′

(1 + iω′)(2 + iω′)

)
×(2 + iω′ + 4γ

15 + 4iω′

(3 + iω′)(4 + iω′)
)

+
8iω′γ
1 + iω′

− 32iω′γ 2

(1 + iω′)(2 + iω′)(3 + iω′)(4 + iω′)

}
(58)

Y 0
0,2(ω

′) = (1− r)
{

3γα

1 + 2iω′

(
2 + 2iω′ + 4γ

15 + 8iω′

(3 + 2iω′)(4 + 2iω′)

)
+(1− α)

[
6γ

2 + iω′

(1 + 2iω′)(2 + 2iω′)

(
2 + 2iω′ + 4γ

15 + 8iω′

(3 + 2iω′)(4 + 2iω′)

)
+

8iω′γ
1 + 2iω′

− 96iω′γ 2

(1 + 2iω′)(3 + 2iω′)(2 + iω′ +
4γ

3 + iω′ +
4γ

4 + iω′ + · · ·

)

−16iω′γ 2

(
3− 4γ

4γ + (2 + iω′)(3 + iω′ +
4γ

4 + iω′ + · · · )
+ 6iω′

)
(1 + 2iω′)(2 + 2iω′)(3 + 2iω′)(4 + 2iω′)

]
× γ

2γ + iω′(1 + iω′ +
2γ

2 + iω′ +
4γ

3 + iω′ +
4γ

4 + iω′ + · · ·

)

+
128γ 2

(1 + 2iω′)(3 + 2iω′)
Y 0

2,2(ω
′)
}/{[

2iω′ + 4γ
3 + 4iω′

(1 + 2iω′)(2 + 2iω′)

]
×
[
2 + 2iω′ + 4γ

15 + 8iω′

(3 + 2iω′)(4 + 2iω′)

]
+

16iω′γ ((2 + iω′)(3 + iω′)(4 + iω′)− 4γ )

(1 + 2iω′)(2 + 2iω′)(3 + 2iω′)(4 + 2iω′)

}
. (59)

Appendix C. The DC (Φ0), theω (Φ1) and the 2ω (Φ2) components of the quantum
Kerr function

80(ω
′) = 1

60
E2K0

∞∑
l=0

l + 1

a

[
(1− α) l

2l − 1

1

γ ′l
(e−βEl−1 − e−βEl )

×
(

2r
0′l + i(l +1ω′l )
(l +1ω′l )2 + 0′2l

+
1

2
(1− r) 0

′
l + i(l +1ω′l − ω′)

(l +1ω′l − ω′)2 + 0′2l

)
− l

2l + 3
(1− α) 1

γ ′l
(e−βEl − e−βEl+1)

(
2r
0′l+1 + i(l + 1 +1ω′l+1)

(l + 1 +1ω′l+1)
2 + 0′2l+1
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+
1

2
(1− r) 0

′
l+1 + i(l + 1 +1ω′l+1− ω′)
(l + 1 +1ω′l+1− ω′)2 + 0′2l+1

)
+

3(l + 2)

2l + 3

1

(2l + 3 +1ω′2l+3)
2 + 0′22l+3

×
{
(2l + 3 +1ω′2l+3)− i0′2l+3)

[
(e−βEl − e−βEl+1)

×
(

2r
(l + 1 +1ω′l+1− i0′l+1)

(l + 1 +1ω′l+1)
2 + 0′2l+1

+
1

2
(1− r) (l + 1 +1ω′l+1− ω′ − i0′l+1)

(l + 1 +1ω′l+1− ω′)2 + 0′2l+1

+
1

2
(1− r) (l + 1 +1ω′l+1 + ω′ − i0′l+1)

(l + 1 +1ω′l+1 + ω′)2 + 0′2l+1

)
− (e−βEl+1 − e−βEl+2)

×
(

2r
(l + 2 +1ω′l+2− i0′l+2)

(l + 2 +1ω′l+2)
2 + 0′2l+2

+
1

2
(1− r) (l + 2 +1ω′l+2− ω′ − i0′l+2)

(l + 2 +1ω′l+2− ω′)2 + 0′2l+2

+
1

2
(1− r) (l + 2 +1ω′l+2 + ω′ − i0′l+2)

(l + 2l +1ω′l+2 + ω′)2 + 0′2l+2

)]
(1− α)

+
α

2
(e−βEl − e−βEl+2)(2l + 3 +1ω′2l+3)

}]
(60)

81(ω
′) =
√
r(1− r)

60
E2K0

∞∑
l=0

l + 1

a

[
2(1− α)(γ ′l − iω′)

γ ′2l + ω′2

{
l

2l + 3
(e−βEl − e−βEl+1)

×
(

0′l+1

(l + 1 +1ω′l+1)
2 + 0′2l+1

+
0′l+1 + i(l + 1 +1ω′l+1 + ω′)
(l + 1 +1ω′l+1 + ω′)2 + 0′2l+1

−0
′
l+1 + i(l + 1 +1ω′l+1− ω′)
(l + 1 +1ω′l+1− ω′)2 + 0′2l+1

)
− l

2l − 1
(e−βEl−1 − e−βEl )

×
(

0′l
(l +1ω′l )2 + 0′2l

+
0′l + i(l +1ω′l + ω′)
(l +1ω′l + ω′)2 + 0′2l

− 0
′
l + i(l +1ω′l − ω′)

(l +1ω′l − ω′)2 + 0′2l

)}
+

3(l + 2)

2l + 3

× (2l + 3 +1ω′2l+3)
2 − ω′2 − 2iω′0′2l+3

[(2l + 3 +1ω′2l+3)
2 − ω′2 + 0′22l+3]

2 + 4ω′20′22l+3

{
(1− α)(2l + 3 +1ω′2l+3

+ω′ − i0′2l+3)

[
(e−βEl − e−βEl+1)

(
l + 1 +1ω′l+1− ω′ − i0′l+1

(l + 1 +1ω′l+1− ω′)2 + 0′2l+1

+
l + 1 +1ω′l+1− i0′l+1−
(l + 1 +1ω′l+1)

2 + 0′2l+1

)
− (e−βEl+1 − e−βEl+2)

×
(
(l + 2 +1ω′l+2− ω′ − i0′l+2)

(l + 2 +1ω′l+2− ω′)2 + 0′2l+2

+
l + 2 +1ω′l+2− i0′l+2

(l + 2 +1ω′l+2)
2 + 0′2l+2

)]
+(2l + 3 +1ω′2l+3− ω′ + i0′2l+3)

[
(e−βEl − e−βEl+1)

×
(
l + 1 +1ω′l+1 + ω′ + i0′l+1

(l + 1 +1ω′l+1− ω′)2 + 0′2l+1

+
l + 1 +1ω′l+1 + i0′l+1

(l + 1 +1ω′l+1)
2 + 0′2l+1

)
−(e−βEl+1 − e−βEl+2)

(
l + 2 +1ω′l+2 + ω′ + i0′l+2

(l + 2 +1ω′l+2− ω′)2 + 0′2l+2
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+
l + 2 +1ω′l+2 + i0′l+2

(l + 2 +1ω′l+2)
2 + 0′2l+2

)]
(1− α) + α(2l + 3 +1ω′2l+3)

×(e−βEl − e−βEl+2)

}]
(61)

82(ω
′) = (1− r)

60
E2K0

∞∑
l=0

l + 1

a

[
2(1− α)(γ ′l − 2iω′)

γ ′2l + 4ω′2

{
l

2l + 3
(e−βEl − e−βEl+1)

×
(
0′l+1 + i(l + 1 +1ω′l+1 + ω′)
(l + 1 +1ω′l+1 + ω′)2 + 0′2l+1

− 0′l+1 + i(l + 1 +1ω′l+1− ω′)
(l + 1 +1ω′l+1− ω′)2 + 0′2l+1

)
− l

2l − 1
(e−βEl−1 − e−βEl )

[
(0′l + i(l +1ω′l + ω′)
(l +1ω′l + ω′)2 + 0′2l

−

− 0
′
l + i(l +1ω′l − ω′)

(l +1ω′l − ω′)2 + 0′2l

]}
+

3(l + 2)

2l + 3

×( 2l + 3 +1ω′2l+3)
2 − 4ω′2 − 4iω′0′2l+3

[(2l + 3 +1ω′2l+3)
2 − 4ω′2 + 0′22l+3]

2 + 16ω′20′22l+3

{
(2l + 3 +1ω′2l+3

+2ω′ − i0′2l+3)

(
(e−βEl − e−βEl+1)

l + 1 +1ω′l+1− ω′ − i0′l+1

(l + 1 +1ω′l+1− ω′)2 + 0′2l+1

−(e−βEl+1 − e−βEl+2)
(l + 2 +1ω′l+2 + ω′ − i0′l+2)

(l + 2 +1ω′l+2 + ω′)2 + 0′2l+2

)
(1− α)

+(2l + 3 +1ω′2l+3− 2ω′ + i0′2l+3)

(
(e−βEl − e−βEl+1)

× l + 1 +1ω′l+1 + ω′ + i0′l+1)

(l + 1 +1ω′l+1 + ω′)2 + 0′2l+1

− (e−βEl+1 − e−βEl+2)

× l + 2 +1ω′l+2 + ω′ + i0′l+2

(l + 2 +1ω′l+2− ω′)2 + 0′2l+2

)
(1− α)

+α(2l + 3 +1ω′2l+3)(e
−βEl − e−βEl+2)

}]
. (62)
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